Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Parasit Vectors ; 15(1): 23, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1627901

RESUMEN

BACKGROUND: Yellow fever virus (YFV) is an arbovirus that, despite the existence of a safe and effective vaccine, continues to cause outbreaks of varying dimensions in the Americas and Africa. Between 2017 and 2019, Brazil registered un unprecedented sylvatic YFV outbreak whose severity was the result of its spread into zones of the Atlantic Forest with no signals of viral circulation for nearly 80 years. METHODS: To investigate the influence of climatic, environmental, and ecological factors governing the dispersion and force of infection of YFV in a naïve area such as the landscape mosaic of Rio de Janeiro (RJ), we combined the analyses of a large set of data including entomological sampling performed before and during the 2017-2019 outbreak, with the geolocation of human and nonhuman primates (NHP) and mosquito infections. RESULTS: A greater abundance of Haemagogus mosquitoes combined with lower richness and diversity of mosquito fauna increased the probability of finding a YFV-infected mosquito. Furthermore, the analysis of functional traits showed that certain functional groups, composed mainly of Aedini mosquitoes which includes Aedes and Haemagogus mosquitoes, are also more representative in areas where infected mosquitoes were found. Human and NHP infections were more common in two types of landscapes: large and continuous forest, capable of harboring many YFV hosts, and patches of small forest fragments, where environmental imbalance can lead to a greater density of the primary vectors and high human exposure. In both, we show that most human infections (~ 62%) occurred within an 11-km radius of the finding of an infected NHP, which is in line with the flight range of the primary vectors. CONCLUSIONS: Together, our data suggest that entomological data and landscape composition analyses may help to predict areas permissive to yellow fever outbreaks, allowing protective measures to be taken to avoid human cases.


Asunto(s)
Brasil , Culicidae , Brotes de Enfermedades , Mosquitos Vectores , Fiebre Amarilla/transmisión , Aedes/crecimiento & desarrollo , Aedes/virología , Animales , Biodiversidad , Brasil/epidemiología , Clima , Culicidae/crecimiento & desarrollo , Culicidae/virología , Bosques , Humanos , Mosquitos Vectores/clasificación , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/virología , Factores de Riesgo , Fiebre Amarilla/epidemiología
2.
Gac Med Mex ; 157(2): 187-193, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1317391

RESUMEN

In American countries, simultaneously with the coronavirus disease 2019 (COVID-19) pandemic, epidemics caused by different arboviruses (dengue, chikungunya and Zika viruses) are occurring. In Mexico, several of the strategies to control the Aedes aegypti mosquito, which transmits arboviruses, involve the interaction of health personnel with the community. Due to the COVID-19 pandemic, social distancing and home confinement measures have been implemented. To obey these measures and avoid the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, the National Center for Preventive Programs and Disease Control (CENAPRECE) has presented the vector control strategy in the scenario of simultaneous dengue and COVID-19 transmission in Mexico. In this work, we mention the routine comprehensive mosquito control measures and describe the adaptations that have been made. Furthermore, we discuss the relevance of medical personnel training and supervision, especially focusing on the similarity of symptoms between both pathologies.


En países americanos, simultáneas a la pandemia de enfermedad por coronavirus 2019 (COVID-19) se están dando epidemias ocasionadas por diferentes arbovirus (del dengue, chikunguña y virus del Zika). En México, varias de las estrategias para control del mosquito Aedes aegypti, transmisor de arbovirus, involucran la interacción del personal salubrista y los moradores. Debido a la pandemia de COVID-19 se han implementado medidas de distanciamiento social y resguardo domiciliario. Para respetar estas medidas y evitar riesgo de contagio por coronavirus 2 del síndrome respiratorio agudo grave (SARS-CoV-2), el Centro Nacional de Programas Preventivos y Control de Enfermedades (CENAPRECE) ha presentado la estrategia de control de vectores en el escenario de transmisión simultánea por dengue y COVID-19 en México. En este trabajo mencionamos las medidas habituales de manejo integral de mosquito y mencionamos las adaptaciones realizadas. De igual forma, discutimos la relevancia de la capacitación y la supervisión al personal médico, esto debido a la similitud entre la sintomatología entre ambas patologías.


Asunto(s)
Aedes/virología , Infecciones por Arbovirus/epidemiología , COVID-19/epidemiología , Monitoreo Epidemiológico , Control de Mosquitos/métodos , Pandemias , Animales , Infecciones por Arbovirus/prevención & control , COVID-19/prevención & control , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/prevención & control , Dengue/epidemiología , Dengue/prevención & control , Promoción de la Salud , Humanos , Difusión de la Información , Distanciamiento Físico , Infección por el Virus Zika/epidemiología
3.
N Engl J Med ; 384(23): 2177-2186, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1263529

RESUMEN

BACKGROUND: Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia pipientis are less susceptible than wild-type A. aegypti to dengue virus infection. METHODS: We conducted a cluster-randomized trial involving releases of wMel-infected A. aegypti mosquitoes for the control of dengue in Yogyakarta, Indonesia. We randomly assigned 12 geographic clusters to receive deployments of wMel-infected A. aegypti (intervention clusters) and 12 clusters to receive no deployments (control clusters). All clusters practiced local mosquito-control measures as usual. A test-negative design was used to assess the efficacy of the intervention. Patients with acute undifferentiated fever who presented to local primary care clinics and were 3 to 45 years of age were recruited. Laboratory testing was used to identify participants who had virologically confirmed dengue (VCD) and those who were test-negative controls. The primary end point was symptomatic VCD of any severity caused by any dengue virus serotype. RESULTS: After successful introgression of wMel into the intervention clusters, 8144 participants were enrolled; 3721 lived in intervention clusters, and 4423 lived in control clusters. In the intention-to-treat analysis, VCD occurred in 67 of 2905 participants (2.3%) in the intervention clusters and in 318 of 3401 (9.4%) in the control clusters (aggregate odds ratio for VCD, 0.23; 95% confidence interval [CI], 0.15 to 0.35; P = 0.004). The protective efficacy of the intervention was 77.1% (95% CI, 65.3 to 84.9) and was similar against the four dengue virus serotypes. The incidence of hospitalization for VCD was lower among participants who lived in intervention clusters (13 of 2905 participants [0.4%]) than among those who lived in control clusters (102 of 3401 [3.0%]) (protective efficacy, 86.2%; 95% CI, 66.2 to 94.3). CONCLUSIONS: Introgression of wMel into A. aegypti populations was effective in reducing the incidence of symptomatic dengue and resulted in fewer hospitalizations for dengue among the participants. (Funded by the Tahija Foundation and others; AWED ClinicalTrials.gov number, NCT03055585; Indonesia Registry number, INA-A7OB6TW.).


Asunto(s)
Aedes/microbiología , Control de Enfermedades Transmisibles/métodos , Dengue/transmisión , Mosquitos Vectores , Wolbachia , Adolescente , Adulto , Aedes/virología , Animales , Niño , Preescolar , Dengue/diagnóstico , Dengue/epidemiología , Dengue/prevención & control , Virus del Dengue/aislamiento & purificación , Femenino , Humanos , Incidencia , Indonesia/epidemiología , Masculino , Persona de Mediana Edad , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología , Adulto Joven
4.
PLoS Negl Trop Dis ; 15(3): e0009259, 2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1127761

RESUMEN

Dengue, Zika and chikungunya are diseases of global health significance caused by arboviruses and transmitted by the mosquito Aedes aegypti, which is of worldwide circulation. The arrival of the Zika and chikungunya viruses to South America increased the complexity of transmission and morbidity caused by these viruses co-circulating in the same vector mosquito species. Here we present an integrated analysis of the reported arbovirus cases between 2007 and 2017 and local climate and socio-economic profiles of three distinct Colombian municipalities (Bello, Cúcuta and Moniquirá). These locations were confirmed as three different ecosystems given their contrasted geographic, climatic and socio-economic profiles. Correlational analyses were conducted with both generalised linear models and generalised additive models for the geographical data. Average temperature, minimum temperature and wind speed were strongly correlated with disease incidence. The transmission of Zika during the 2016 epidemic appeared to decrease circulation of dengue in Cúcuta, an area of sustained high incidence of dengue. Socio-economic factors such as barriers to health and childhood services, inadequate sanitation and poor water supply suggested an unfavourable impact on the transmission of dengue, Zika and chikungunya in all three ecosystems. Socio-demographic influencers were also discussed including the influx of people to Cúcuta, fleeing political and economic instability from neighbouring Venezuela. Aedes aegypti is expanding its range and increasing the global threat of these diseases. It is therefore vital that we learn from the epidemiology of these arboviruses and translate it into an actionable local knowledge base. This is even more acute given the recent historical high of dengue cases in the Americas in 2019, preceding the COVID-19 pandemic, which is itself hampering mosquito control efforts.


Asunto(s)
Fiebre Chikungunya/epidemiología , Dengue/epidemiología , Infección por el Virus Zika/epidemiología , Aedes/fisiología , Aedes/virología , Animales , Fiebre Chikungunya/economía , Fiebre Chikungunya/virología , Virus Chikungunya/fisiología , Clima , Colombia/epidemiología , Dengue/economía , Dengue/virología , Virus del Dengue/fisiología , Factores Económicos , Ecosistema , Humanos , Mosquitos Vectores/fisiología , Mosquitos Vectores/virología , América del Sur , Temperatura , Virus Zika/fisiología , Infección por el Virus Zika/economía , Infección por el Virus Zika/virología
5.
Parasit Vectors ; 14(1): 76, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1041990

RESUMEN

BACKGROUND: On 11 March 2020, the World Health Organisation (WHO) declared the coronavirus disease 2019 (COVID-19) outbreak to be a pandemic. As the mosquito season progressed, the understandable concern that mosquitoes could transmit the virus began to increase among the general public and public health organisations. We have investigated the vector competence of Culex pipiens and Aedes albopictus, the two most common species of vector mosquitoes in Europe, for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the very unusual feeding behaviour of Ae. albopictus, we also evaluated the role of this mosquito in a potential mechanical transmission of the virus. METHODS: For the vector competence study, mosquitoes were allowed to take several infectious blood meals. The mosquitoes were then collected and analysed at 0, 3, 7 and 10 days post-feeding. For the mechanical transmission test, Ae. albopictus females were allowed to feed for a short time on a feeder containing infectious blood and then on a feeder containing virus-free blood. Both mosquitoes and blood were tested for viral presence. RESULTS: Culex pipiens and Ae. albopictus were found not be competent vectors for SARS-CoV-2, and Ae. albopictus was unable to mechanically transmit the virus. CONCLUSIONS: This is the first study to show that the most common species of vector mosquitoes in Europe do not transmit SARS-CoV-2 and that Ae. albopictus is unable to mechanically transmit the virus from a positive host to a healthy host through host-feeding.


Asunto(s)
Aedes/virología , COVID-19/transmisión , Culex/virología , Mosquitos Vectores/virología , SARS-CoV-2/fisiología , Animales , Sangre/virología , Europa (Continente) , Femenino , ARN Viral/análisis , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , Ovinos/sangre
6.
Viruses ; 12(12)2020 11 25.
Artículo en Inglés | MEDLINE | ID: covidwho-945954

RESUMEN

Since the recent epidemics of yellow fever in Angola and Brazil as well as the importation of cases to China in 2016, there has been an increased interest in the century-old enigma, absence of yellow fever in Asia. Although this topic has been repeatedly reviewed before, the history of human intervention has never been considered a critical factor. A two-stage literature search online for this review, however, yielded a rich history indispensable for the debate over this medical enigma. As we combat the pandemic of COVID-19 coronavirus worldwide today, we can learn invaluable lessons from the historical events in Asia. In this review, I explore the history first and then critically examine in depth major hypotheses proposed in light of accumulated data, global dispersal of the principal vector, patterns of YF transmission, persistence of urban transmission, and the possibility of YF in Asia. Through this process of re-examination of the current knowledge, the subjects for research that should be conducted are identified. This review also reveals the importance of holistic approach incorporating ecological and human factors for many unresolved subjects, such as the enigma of YF absence in Asia, vector competence, vector dispersal, spillback, viral persistence and transmission mechanisms.


Asunto(s)
Aedes/fisiología , Mosquitos Vectores/fisiología , Fiebre Amarilla/prevención & control , Fiebre Amarilla/transmisión , Aedes/virología , Distribución Animal , Animales , Asia , Humanos , Mosquitos Vectores/virología , Virus de la Fiebre Amarilla
7.
Sci Rep ; 10(1): 12640, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: covidwho-690878

RESUMEN

Aedes-borne diseases, such as dengue and chikungunya, are responsible for more than 50 million infections worldwide every year, with an overall increase of 30-fold in the last 50 years, mainly due to city population growth, more frequent travels and ecological changes. In the United States of America, the vast majority of Aedes-borne infections are imported from endemic regions by travelers, who can become new sources of mosquito infection upon their return home if the exposed population is susceptible to the disease, and if suitable environmental conditions for the mosquitoes and the virus are present. Since the susceptibility of the human population can be determined via periodic monitoring campaigns, the environmental suitability for the presence of mosquitoes and viruses becomes one of the most important pieces of information for decision makers in the health sector. We present a next-generation monitoring and forecasting system for [Formula: see text]-borne diseases' environmental suitability (AeDES) of transmission in the conterminous United States and transboundary regions, using calibrated ento-epidemiological models, climate models and temperature observations. After analyzing the seasonal predictive skill of AeDES, we briefly consider the recent Zika epidemic, and the compound effects of the current Central American dengue outbreak happening during the SARS-CoV-2 pandemic, to illustrate how a combination of tailored deterministic and probabilistic forecasts can inform key prevention and control strategies .


Asunto(s)
Aedes/virología , Monitoreo Epidemiológico , Mosquitos Vectores/virología , Enfermedades Transmitidas por Vectores/patología , Animales , Betacoronavirus/aislamiento & purificación , COVID-19 , Clima , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Bases de Datos Factuales , Toma de Decisiones , Monitoreo Epidemiológico/veterinaria , Humanos , Pandemias , Neumonía Viral/patología , Neumonía Viral/transmisión , Neumonía Viral/virología , SARS-CoV-2 , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/virología
8.
Mem Inst Oswaldo Cruz ; 115: e200284, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-713183

RESUMEN

The coronavirus disease of 2019 (COVID-19) pandemic challenges public health systems around the world. Tropical countries will face complex epidemiological scenarios involving the simultaneous transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with viruses transmitted by Aedes aegypti. The occurrence of arboviral diseases with COVID-19 in the Latin America and the Caribbean (LAC) region presents challenges and opportunities for strengthening health services, surveillance and control programs. Financing of training, equipment and reconversion of hospital spaces will have a negative effect on already the limited resource directed to the health sector. The strengthening of the diagnostic infrastructure reappears as an opportunity for the national reference laboratories. Sharing of epidemiological information for the modeling of epidemiological scenarios allows collaboration between health, academic and scientific institutions. The fear of contagion by COVID-19 is constraining people with arboviral diseases to search for care which can lead to an increase in serious cases and could disrupt the operation of vector-control programs due to the reluctance of residents to open their doors to health personnel. Promoting intense community participation along with the incorporation of long lasting innovations in vector control offers new opportunities for control. The COVID-19 pandemic offers challenges and opportunities that must provoke positive behavioral changes and encourage more permanent self-care actions.


Asunto(s)
Aedes/microbiología , Aedes/virología , Infecciones por Coronavirus , Coronavirus , Dengue/prevención & control , Pandemias , Neumonía Viral , Fiebre Amarilla/prevención & control , Américas , Animales , Betacoronavirus , COVID-19 , Región del Caribe , Infecciones por Coronavirus/epidemiología , Humanos , Mosquitos Vectores , Neumonía Viral/epidemiología , SARS-CoV-2
9.
Sci Rep ; 10(1): 11915, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: covidwho-654201

RESUMEN

This research addresses public speculation that SARS-CoV-2 might be transmitted by mosquitoes. The World Health Organization has stated "To date there has been no information nor evidence to suggest that the new coronavirus could be transmitted by mosquitoes". Here we provide the first experimental data to investigate the capacity of SARS-CoV-2 to infect and be transmitted by mosquitoes. Three widely distributed species of mosquito; Aedes aegypti, Ae. albopictus and Culex quinquefasciatus, representing the two most significant genera of arbovirus vectors that infect people, were tested. We demonstrate that even under extreme conditions, SARS-CoV-2 virus is unable to replicate in these mosquitoes and therefore cannot be transmitted to people even in the unlikely event that a mosquito fed upon a viremic host.


Asunto(s)
Betacoronavirus/fisiología , Culicidae/virología , Aedes/virología , Animales , Betacoronavirus/aislamiento & purificación , Chlorocebus aethiops , Culex/virología , Insectos Vectores/virología , SARS-CoV-2 , Células Vero
10.
Virology ; 547: 35-46, 2020 08.
Artículo en Inglés | MEDLINE | ID: covidwho-343623

RESUMEN

Spondweni virus (SPONV) is the most closely related known flavivirus to Zika virus (ZIKV). Its pathogenic potential and vector specificity have not been well defined. SPONV has been found predominantly in Africa, but was recently detected in a pool of Culex quinquefasciatus mosquitoes in Haiti. Here we show that SPONV can cause significant fetal harm, including demise, comparable to ZIKV, in a mouse model of vertical transmission. Following maternal inoculation, we detected infectious SPONV in placentas and fetuses, along with significant fetal and placental histopathology, together suggesting vertical transmission. To test vector competence, we exposed Aedes aegypti and Culex quinquefasciatus mosquitoes to SPONV-infected bloodmeals. Aedes aegypti could efficiently transmit SPONV, whereas Culex quinquefasciatus could not. Our results suggest that SPONV has the same features that made ZIKV a public health risk.


Asunto(s)
Aedes/virología , Infecciones por Flavivirus/virología , Flavivirus/fisiología , Mosquitos Vectores/virología , Receptor de Interferón alfa y beta/genética , Aedes/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Flavivirus/genética , Infecciones por Flavivirus/genética , Infecciones por Flavivirus/metabolismo , Infecciones por Flavivirus/mortalidad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mosquitos Vectores/fisiología , Receptor de Interferón alfa y beta/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA